Fixed Points of Multimaps Which Are Not Necessarily Nonexpansive
نویسنده
چکیده
Let C be a nonempty closed bounded convex subset of a Banach space X whose characteristic of noncompact convexity is less than 1 and T a continuous 1-χ-contractive SL map (which is not necessarily nonexpansive) from C to KC(X) satisfying an inwardness condition, where KC(X) is the family of all nonempty compact convex subsets of X . It is proved that T has a fixed point. Some fixed points results for noncontinuous maps are also derived as applications. Our result contains, as a special case, a recent result of Benavides and Ramı́rez (2004).
منابع مشابه
Nonexpansive mappings on complex C*-algebras and their fixed points
A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...
متن کاملFixed Points and Coincidence Points for Multimaps with Not Necessarily Bounded Images
Many authors have been using the Hausdorffmetric to obtain fixed point and coincidence point theorems for multimaps on a metric space. In most cases, the metric nature of the Hausdorff metric is not used and the existence part of theorems can be proved without using the concept of Hausdorff metric under much less stringent conditions on maps. The aim of this paper is to illustrate this and to o...
متن کاملExistence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کاملDotson′s convexity, Banach operator pair and best simultaneous approximations
The existence of common fixed points is established for three mappings where T is either generalized (f, g)-nonexpansive or asymptotically (f, g)-nonexpansive on a set of fixed points which is not necessarily starshaped. As applications, the invariant best simultaneous approximation results are proved. AMS subject classifications: 47H10, 54H25
متن کاملA New Iterative Algorithm for Multivalued Nonexpansive Mappping and Equlibruim Problems with Applications
In this paper, we introduce two iterative schemes by a modified Krasnoselskii-Mann algorithm for finding a common element of the set of solutions of equilibrium problems and the set of fixed points of multivalued nonexpansive mappings in Hilbert space. We prove that the sequence generated by the proposed method converges strongly to a common element of the set of solutions of equilibruim proble...
متن کامل